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The convergence of the solutions of the equations of a finite-dimensional model of the oscillations of a beam (n masses coupled 
by elastic hinges) to the solutions of a system with distributed parameters as n ~ 0. is proved. © 1996 Elsevier Science Ltd. 
All rights reserved. 

A constructive algorithm for finding the free and resonance vibrations of the finite dimensional model being 
considered has been presented earlier [1]. A review of the results on the use and study of a system of rigid bodies 
is given in [2]. 

1. A N  E L A S T I C  R O D  A N D  A S Y S T E M  O F  C O U P L E D  R I G I D  B O D I E S  

Consider a rod which has a constant cross-section and an unchanging stiffness (a homogeneous rod). We assume 
that the elements of the rod undergo only translational motion during the vibrations, that both ends of the rod 
are free and that there are no external forces or moments. The equations for small vibrations of the elastic rod 
and the boundary conditions then have the form 

El~4y / ~X 4 + SpO2 y / Ot 2 = 0 (1.1) 

x=0 ,  x=l: El~2y/Ox2=O. ElO3),/Ox3=O (1.2) 

where E1 is the stiffaaess of the rod,'/is its length, S is the cross-section area, p is the density and the OX ards is 
directed along the undeformed axis of the rod. 

We now consider the motion of a system of coupled rigid bodies (SCRB) which simulates the small vibrations 
of the elastic rod in the formulation described above. In the finite-dimensional case, it can be represented by N -  
1 point masses with masses m arranged along an elastic line which is simulated by N weightless rods Sk coupled 
by cylindrical hinges. It is assumed that the motion occurs in the OXYplane. 

We introduce the following systems of coordinates: 
OXYZ (unit vectors ex, ey, ez) is a fixed system of coordinates, the OX axis of which at the initial instant t = to is 

directed along the axis. of the body $1; 
OoXYZ is a system associated with the point O0 which belongs to the body $1, the axes of which are coUinear 

with the corresponding axes of the fixed system; 
OoX'Y" (unit vectors i andj)  is a system in which OoX' II O00~, where O~ is a point on the axis of the body Sjv; 
Oi-lXkYk is a system associated with the body S~ and, in it, O&_mXgllOk_mO k (k = 1-'-,N). 
We will define the position of the system OoX'Y" with respect to the fixed angle ~ and the position of the coupled 

system with respect to OoX'Y" by the angle ~/2 (k = 1-7"N-). 
As in [4], during the motion of the free system [1], it is possible to separate out its motion as a whole (the large 

motion) and the relative elastic vibrations (the small motion). Here, the large motion is determined by the change 
in the coordinates of the point Oo(xo, Yo) and the angle ~, while the small motion is determined by the change in 
the angle ~k. Since on!? small deformations of the rod are considered in the continuous formulation then, also in 
the SCRB, we shall study the case when the angles ~k are small. The kinetic energy and potential energy of the 
SCRB under consider~Ltion are 

=--m N 2 l-I l x 2 [ N  - 9 2 ] T / . ,vk,  = ~  / 2 ,  {Vk-~l/k_l) '+o(~t.)  (1.3) 
2 k=0 ~ Lk=2 J 
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where ~2 is the stiffness of an elastic hinge, a)k = a~k(x0,Y0, ¥,  ~/k) is the velocity of the pole Ok (k = 0---,-,N) and o(~2k) 
are terms of greater than the second order of smallness in ~k- 

We conclude from (1.3) that the potential energy is positive definite with respect to some of the variables and, 
in fact, with respect to Yk and, since the kinetic energy is a positive definite function it follows from the results 
previously obtained [5] that, provided the ~k are small at t = to, they remain small during the whole duration of 
the motion as a consequence of the stability of the motion of the system with respect to these variables• We will 
denote the coordinates of the points Ok (k = 0- '~)  in the system OoX'Y' by u~ wk. Then,t for small deflections, 
we assume in the linear approximation that 

~llk =(Wk-wk-I) /h ,  Uk =kh ~k =I,--N) (1.4) 

Uo=Wo=WN=O, UN=Nh, h = l l N  

where h is the distance between Ok and Ok+ 1 (k.= O---,',N). 
The velocity of the point Ok is equal to vk = OOk = v0 + OoOk and can be expressed as 

vtc = v0 + (wk + k h ~ ) j  - w k ~ i  (1.5) 

v 0 = X0ex + y0ey 

We substitute expressions (1.4) and (1.5) into (1.3). The kinetic energy and potential energy, apart from terms 
of the second order of smallness, are as follows: 

T=2Nm(h~ +~b~ ) ,n ~ +--  2. [-2Vut, wk +w2~ 2 +2~'t,(g'k +kh~)+~'2k +k2h2~ 2 +2kh~tfi'k ] 
2 k = l  

I 'l= 2h- ~ (w2-2wl)  + 5". (Wk_l-2wk+Wk+l)2+(wN_2-2WN_l) 2 
k=3 

Here, tip = J0cos ~ + Y0 sin ~, ffp = -x0 sin ~ +Yo cos ~/ 
The system has three integrals 

N - I  

Mfip-m~ ]~ w k=CI 
k=l 

N-I 
Mi'p + m a ~ + m  Z wk = Cz (1.6) 

k = l  

~-I 2) N-I u-t 
a l +  Z wk +aWO-Up ~. wk+h Z kfvk=C3 

k=l k=l k=l 

(1t4 = Nm, a I = h2N(N - I ) ( 2 N -  1)/6, a = 1ffV(N + 1)/2) 

We will now consider the case when,  at the initial instant, the m o m e n t u m  and the angular momentum are equal  
to zero. This means  that the constants o f  integration are equal  to zero.  In particular, w e  can then assume that, at 
the initial instant, system (1.6) has a null solution. Assuming that the variables ¥,  u.,  wp are small when t = to, we 

• . Y 
consider them to be small during the whole time of the moUon. In this case, we denote the coordinates of the 
points Ok (k = 0 - ~ )  in the fixed basis byxk, Yk, assume thatyk are small and obtain the following equations of the 
small vibrations (see the paper cited in the footnote) 

Y0 +x2(y2-2Yl +Y0 )= 0  

);I + x2 (Y3 - 4Y2 + 5Yl - 2Y0 ) = 0 

);k+x2(Ytc-2-4Yk-1+6yk-4Yk+l+Yk+2 )=0  k = 2 . N - 2  

);U-I +x2(y/q-3 -4YN-2 +5YN-I -2YN)=0  

"" +x2( 2 +yN)=0 ,  ×2=x21(mh 2) YN I YN-2- YN-I 

(1.7) 

tBOLGRABSKAYA I. A., Equations of systems of coupled rigid bodies and of small vibrations of elastic roads. In Dynamics 
of systems of coupled rigid bodies and bodies with cavities containing a liquid. Preprint No. 90--03. Inst. Prikl. Mat. Mekh., Akad. 
Nauk UkrSSR, Donetsk, 1990. 
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2. C O M P A R I S O N  O F  T H E  S O L U T I O N S  F O R  T H E  R O D  A N D  
F I N I T E - D I M E N S I O N A L  M O D E L S  

It is easily seen that the equations of motion (1.7) can be treated as a finite-difference approximation of Eqs 
(1.1) and (1.2) with respect to the spatial variable Xk = kh. This fact subsequently enables us to use theorems which 
have been proved in the theory of finite difference schemes to prove that the solution of the finite-dimensional 
problem (SCRB) converges to the solution of the continuous problem (an elastic rod) which corresponds to it as 
regards its formulation. According to the results obtained earlier [6], the solution of the finite-dimensional problem 
converges to the solution of the continuous problem when two conditions are satisfied: the equations of the finite- 
dimensional model must approximate the equations of the continuous model and, furthermore, the finite-difference 
scheme, to which the system of ordinary differential equations corresponds in the case under consideration, must 
be stable. 

Let L be a continuous differential operator and let L h be a difference operator. Then, Eqs (1.1) and (1.2) and 
system (1.7) can be correspondingly written as 

Ly = 0 (2.1) 

LhYh = O (2.2) 

Then, if y(xk) is the solution of the continuous problem (2.1) when x = xk, we have L(y(xk)) = O, 
LhCv(~k)) = ~h.  

By definition [6], the solution of the finite-difference system (2.2) approximates the solution Yof the continuous 
system (2.1) in the case when I[ 8fh [1 ---> 0 when h ~ 0. 

In (1.7), let us put 

x 2 = El/h. m = pSh (2.3) 

It has been proved (see the paper cited in the footnote) that, subject to condition (2.3), the equations of motion 
of the SCRB (1.7) co:averges to the equations for small vibrations of an elastic rod (1.1), (1.2). It follows from this 
that the equations of motion of the SCRB approximate to the equations for small vibrations of elastic rods. 

Since the approximation has already been established, we shall concentrate on proving the stability. According 
to the definition in [7], the difference problem (2.2) being considered is stable if, for anyfh(t) ~ Fh, Ilfh Ileh < 8 
the equation Zhy h = j~ has a unique solution when IlYh II ~< CS, where C is independent ofh  and I1" II is any of the 
norms [8] introduced in the space of the functions Y. 

The integrals (1.6) with null integration constants have the following form in the new variables 

N N 
5". Yt = O, Y.k.i't = 0 (2.4) 

k=O k=l 

We now make the change of variables 

z k = y t - y k _  I ~k=l,N).  v~=zk - z t÷ l  ( k = l , N - l )  

in (1.7) and we then obtain the following system 

(2.5) 

~t+GN4AV=O; G=EII(pSI4). N = l l h  (2.6) 

where G is a consta~Lt which is independent of h, A is a symmetric pentadiagonal matrix of the nth order (n = N 
- 1) with elements aq defined by the equalities 

i<~j<n 

I 6, j=i ,  
-4. j = i + l ,  

a / j= I. j = i + 2  

0, j > i + 2  

and the elements below the principal diagonal are obtained by symmetric reflection V = (1) 1 . . . . .  1)n) T. System 
(2.4), (2.6) is equiva]ient to (1.7). After finding 1)~ (k = ,TT-,-,n) from (2.6), we fmdy 0 andzl  = Yl -Y0 from (2.4) and 
the remainingy~ (k -'= 2---,"n) from (2.5). 

Hence, to estimate the solution of system (1.7) and to prove stability, it is necessary to estimate the solution of 
system (2.6) and to show that small perturbations of its right-hand side lead to small perturbations of the solution 
which are independent of h. The establishment of this fact is also evidence of the stability of system (2.6) and, 
together with it whe:a account is taken of (2.4) and (2.5), of system (1.7). 

So, we shall consider the system 
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V + G N 4 A V =  f ( t ) .  IIf(t)ll<,~ 

S inceA is a real symmetric matrix, an orthogonal  matrix B always exists which will reduce it to diagonal form. 
W e  obtain 

0 + AU = B- I f ( t )  (2.7) 

U = B -iV, A = diag(~q ..... 3..) 

where k = (L 1 . . . . .  Xn) is the vector of the eigenvalues of the matrix C = {cq} = {GNaaij}. 
The general  solution of Eq. (2.7) is 

I . 1 T V:Vocos , (2.8) 

Let  us assume that  II V0 II ~ (P0, II V0 II ~ W0 at the initial instant, where II • II is the Euclidean norm of a vector. 
Since B is the orthogonal  transformation II U II = II B-1VII = II VII, on estimating the norm of (2.8), we arrive at  the 
inequality 

IIVII=IIUII~ (Po + ( ~ 0  +~T)/minlx/~- t  I (2.9) 
k 

ThUS, to prove stability, it is necessary to show that  a constant d exists which is independent  of h such that  
1/minkl ~ [ < d, where kk are the eigenvalues of  the matrix C. 

We will denote  the eigenvalues of the matrix M by C. Then, on taking account of (2.7), we have [9] 

3.(C) = GN4~(A) = G(n + I)4~.(A) 

All  of  the angular  minors of the mat r ixA can be calculated in explicit form 

A i = ( i + l ) ( i + 2 ) ' ( i + 3 ) / 1 2 > O  (i = I.n) 

and it follows from Silvester's criterion that  the real matrix A is positive definite and all its eigenvalues are real 
and positive [8, 9]. L e t A  i be a matrix of the ith order  (i ~ n) obtained from the first i rows and i columns of the 
matr ixA.  We denote  the eigenvalues by 3,(A i) = (1~ . . . . .  I~:), assuming that  they are numbered  in increasing order  
of magnitude.  Then 

min(3.~ I= G/~ 41dl ' (2.10) 
k 

We now consider the matrix B i in which bl l  = bii = 5 and the remaining bq = aij. It is obvious that  the equality 

B i=  (Di) 2 i I> 2 (2.11) 

is satisfied, where D / is a symmetric matrix of the ith order,  the elements of which are 

2, re=k,  

d~,,, = - I ,  m = k + l ,  k < m ~ < i  

O, m > k + l ;  

The eigenvalues of the matr ix /k  / are known [7]. It then follows from (2.11) [9] that  

3.k(Bi)=~.~.lDi) = 16sin 4 kn (k=l.-";) (2.12) 
2(i+1) 

We shall use the notat ion ;~(B/) = v~. Then, from (2.12), we obtain 

v~.<vl ,  k<l<~i: v~.>v~., i<s~<, ,  (2.13) 

Since the eigenvalues of the matrix are the roots of its characteristic polynomial,  p.sk, V~, are the roots of  the 
equations 

A,(3.) = A* - kE*, ~t.(~.) = B k - ~.l~* 
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respectively, where E k is the identity matrix of the kth order (k ~< n). 
We now represent A~ in the following manner 

t 
Atc(k)=At_l(k)+ ~ ~i(~.). k =2.n (2.14) 

i=1 

A I = = - ~ + 6  

Next, by taking account of the fact that all the roots of the matrices A k, B k are real, Eq. (2.14) can be written as 

k k - I  k 

i=1 i=l i=1 I=l 
k = 2,n (2.15) 

When k = 1, we have ~t~ = 6, v~ = 5. 
On considering (2.15) for k = 2 . . . . .  n, we successively find, when conditions (2.13) are satisfied, that 

Ak(TL) > 0 when ~. > x/~, and it follows from this that 

la~ > vf,  k = 2,,-'~ (2.16) 

Finally, using (2.12), we have from (2.10) and (2.16) that 

(m~nl~'kl) - '  <[  16G(n+l)4 sin4 2in+l)  7t 1 -I (2.17) 

Using the relation 

lim 16(n +1)4 sin 4 
n - ~  2 ( n  + I ) 

~ = T t  

we conclude that, for safficiently large n (or small h), it follows from (2.17) that (minkl Xk{) -] < d, where the constant 
d is independent of h. 

So, an estimate of the smallest eigenvalue k(C) which is independent of h has been obtained which enables us 
to estimate the solution of (2.8), taking account of (2.9), as follows: 

IIVII~< tP0 +(V0 + ST) l x[-d = C8 (2.18) 

Relation (2.1) gives an estimate of the solution of system (2.6) which is independent of h as a consequence of 
which it follows from (2.4) and (2.5) that the solution of system (1.7), in the case of small perturbations of the 
right-hand side, also changes by an amount which is independent of h, that is, system (1.7) is stable. 

Next, by taking acoaunt of the fact that system (1.7) approximates to (1.1), (1.2), we conclude that its solution 
converges to the solution of the continuous system. 

I wish to thank A. Ya. Savchenko for his interest and for useful discussions. 
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